英國難題專家Henry Ernest Dudene,在他的著作(趣味數學)中介紹了一種不同的把戲。魔術師仍然轉過身去,請一位觀眾擲了個骰子。但現在她是讓這位受騙者把第一個骰子的點數乘以2再加5,把這個結果乘以5後再加上第2個骰子擲出的點數,接著再把此結果乘以10,最後再加上第三個骰子擲出的點數。在得知這一結果後,魔術師就立刻報出這三個骰了擲出的點數各為多少。自然該觀眾得出的最終結果是10(5(2a+5)+b)+c,即100a+10b+c+250.因此魔術師只須從這個結果中減去250,剩下的三位元數中的三個數字就分別是三個骰子所擲出的點數了。其他骰子問題則涉及一些改動了的骰子,它們具有非標準的點數。例如,讀者是否能想出一種方法,只用0,1,2,3,4,5或6這幾個數字來給一對骰子規定點數,使得這對骰子擲出後其總點數之和的所有各種可能情形(從1到12)出現的機會一樣大(答案見本文末尾)?或許最不合符人類直覺的骰子現象是所謂“非可遞骰子”。做3個骰子A、B、C,其各面上的點數如下:A:334488 B:115599 C:226677